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Analysis of fatigue data for lifetime 
predictions for ceramic materials 
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Accuracy in data analysis is of utmost importance because lifetime predictions are 
extremely sensitive to experimental uncertainty in the crack growth parameters. The 
limitations of the conventional data reduction techniques used for analysing static and 
dynamic fatigue data are reviewed and new, statistical methods of data reduction that 
offer advantages over the conventional techniques are discussed. 

1. introduction 
The use of ceramic materials in critical, high 
strength applications motivated the development 
of analytical techniques for predicting the lifetime 
and reliability of ceramic structural components 
[ 1 -3 ] .  These predictive techniques are based on 
the reasonable assumption that failure of ceramic 
materials occurs predominantly from the stress- 
dependent growth of a pre-existing flaw to dimen- 
sions critical for spontaneous crack propagation. 
For most ceramics subcritical crack velocity (V)  
can be expressed as a power function of the stress 
intensity factor (KI) [4]: 

V = AKIN (1) 

where A and N are constants that depend on the 
environment and material composition. From 
Equation 1 it can be derived that the time to 
failure (tf) under a constant tensile stress (o~)is 
[1-3]: 

t f  = B S i N - 2 ~ 2  N (2) 

where B = 2 / ( A Y 2 ( N  --  2) K~-2), Y = geometric 
constant (X/Tr for surface flaws), KIc  = critical 
stress intensity factor, and Si = fracture strength 
in an inert environment. The time to failure in 
Equation 2 is simply the time required for a flaw 
to grow from an initial, subcritical length to the 
critical length for catastrophic crack propagation. 
B and N are the fatigue constants that Characterize 
this subcritical crack growth. The initial flaw size 
is characterized in Equation 2 by the fracture 

strength of the component in an inert environ- 
ment. Since the distribution of initial flaw sizes is 
directly related to the distribution of inert 
strengths, the probability of failure (F )  for a given 
t~ and o a can be obtained from Equation 2 by 
replacing the inert strength with its corresponding 
failure probability. By so doing, it is assumed that 
the origin of fracture is the same for both fatigue 
and inert failures and that the sample with the 
shortest fatigue life has the lowest inert strength 
and the sample with the median life has the me- 
dian inert strength, etc. 

It can also be shown that the minimum lifetime 
after proof testing (train), assuming no crack 
growth on unloading, is given by [1-3]  : 

t m i  n = BoN-20 -N (3) P a 

where ap = proof stress. From a fracture mech- 
anics viewpoint, the value of proof testing is that it 
characterizes the largest effective flaw possible in 
the tested component since any larger flaw would 
have caused failure during the proof test. Thus, 
t m i  n is then the time it takes for this maximum 
length flaw to grow under a constant applied stress 
to critical dimensions for spontaneous fracture. 

From Equation 2 and 3 it is seen that lifetime 
predictions for ceramic materials are dependent on 
the applied stress, the inert strength of the actual 
components, and the experimental parameters B 
and N that characterize subcritical crack growth. 
These crack growth parameters must be measured 
under conditions representative of  the service 
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environment. They can be obtained from crack on a group of statistically identical samples, B and 
velocit, y~.[4]:,:, ~static :, .fat~igee; o~ ='dynamic. ' ~atigue : :N~eat~.,be~etermineS~ff~Eqa~ti.or~.~is~ewritrer~,~,~a . . . .  

experiments [3, 5]. Since lifetime predictions are 
extremely sensitive to experimental uncertainty in 
the crack growth parameters [6, 7] ,  accuracy in 
data analysis is of utmost importance. The purpose 
of this paper is to review and delineate the limi- 
tations of the conventional data reduction tech- 
niques used for analysing static and dynamic 
fatigue data and to introduce new, statistical 
methods of data reduction that offer advantages 
over the conventional techniques. Emphasis has 
been placed on data from static and dynamic tests 
because analysis of crack velocity data is relatively 
straightforward. In addition, for purposes of 
failure prediction data from static and dynamic 
fatigue tests are more reliable since data from 
large, preformed cracks may not be relevant to the 
propagation of the microscopic cracks present in 
structural ceramics [8 ,9] .  Also lifetime predic- 
tions based ion crack velocity data generally 
involve greater extrapolation than do those based 
on static or dynamic fatigue data [10]. 

2. Analysis 
Before discussing the various fatigue data analyses, 
it is important to note the basic problem in deter- 
mining the crack growth parameters B and N by 
the static and dynamic fatigue test techniques. 
That is, one cannot measure on the same sample 
both the fatigue behaviour and the size of the 
initial pre-existing flaw that causes fracture. This is 
true because non-destructive techniques are not 
currently available to measure directly the micro- 
scopic flaw sizes present in structural ceramics. 
However, one means that the initial flaw size 
distribution can be estimated is by measuring the 
inert strengths on samples statistically similar to 
those used in the fatigue experiments. Then by 
pairing the fatigue and inert strength data at equal 
failure probabilities, the initial flaw size in a par- 
ticular fatigue sample can be estimated. The 
various data analysis techniques discussed below 
differ basically in how the fatigue data is paired 
with the inert strength data. 

2.1. Static fatigue data 
Static fatigue data is generally generated by 
measuring the time to failure of a large number of 
samples at several constant applied stresses. From 
this data the median value of t~ can be determined 
as a function of %. By measuring the median S i 

terms of the median values of tf and Si as: 

In ([f)o.s = In B + (N- -  2) In (Si)o.5 - - N l n  oa 
(4) 

where (tf)o.s and (Si)o.5 = median values of te and 
St. From a regression analysis of In (t~)o.s versus 
in aa, N and B are calculated from: 

slope = --N 
(5) 

intercept = In B + (N- -  2) In (Si)0.s 

The median values of te and Si are used since these 
values are at equal failure probabilities and since it 
is the median value that is best estimated from 
relatively small sample sizes. Although the median 
value technique for analysing static fatigue data is 
quite straightforward to apply, it makes inefficient 
use of the data since only the median tf values are 
used in the regression analysis; thus, the uncer- 
tainty in B and N can be large. 

Recognizing the need for more efficient utiliz- 
ation of fatigue data, several researchers [11,12] 
have suggested a method of data reduction that is 
based on a homologous stress ratio (OHS), defined 
a s  

% (6) 
a s s  - Si 

To obtain fatigue data in terms of artS, t~ values 
for each applied stress are ranked and then paired 
with equal ranked Si values, i.e., the lowest S i 
value is paired with the shortest tf, the next lowest 
Si with the next shortest t~ and so on. Since aa is 
fixed for a given ranking of fatigue lives, the 
relationship between OHS, and t~ is established. In 
terms of the homologous stress ratio, Equation 2 
can be rewritten as: 

In (QS~) = In B -- N In arts (7) 

From a regression analysis of in (tfSi 2) versus in 
arts, the constants N and B are determined from 
the slope and intercept, respectively. Since the 
data for all samples that fail in a measurable time 
are used in the regression analysis, this method 
greatly increases the confidence in B and N as 
compared to the median value method. 

With both the median value and homologous 
stress technique, it is necessary to rank the t~ data 
separately at each applied stress; thus, one needs 
to test a relatively large number of samples at each 
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stress condition to determine an accurate estimate 
of the tf distribution. Considerable improvement 
in the statistics can be realized if all the data from 
every stress condition are ranked together. By 
rewriting Equation 2 as: 

(In tf + N In Oa) = In B + (N -- 2) In S i (8) 

it is seen that the left-hand-side of Equation 8 is 
directly related to in $6 hence, the ranking of the 
data in terms of (In tf + N In %) which will be 
defined as the quantity R, is equivalent to the 
ranking of in S i. That is to say, the smallest value 
of R corresponds to the sample that has the lowest 
inert strength, and so on. Therefore, by ranking 
the data in terms of R and pairing these ranked 
values with equal ranked In Si values, the constants 
N and B can be determined from a regression 
analysis where the slope gives N and intercept gives 
B. Although this procedure is relatively straight- 
forward, a complication does arise because the 
value of N, necessary for the calculation of R, is 
not known a priori. Therefore, this data reduction 
technique must be used in an iterative scheme 
where an initial N is assumed for the calculation of 
the values of R, which are then ranked and paired 
with equal ranked In S i values. A regression analy- 
sis of this data then yields a new value of N. This 
new value of N is used to re-calculate and re-rank 
the values of R and the regression is iterated until 
convergence on the value of N is accomplished. At 
this convergence the value of B is then determined. 
This data analysis technique will be referred to in 
this paper as the iterative, bivariant technique. 

All of the three data analysis techniques dis- 
cussed above make use of a known inert strength 
distribution. In some cases the inert strength distri- 
bution may not be known; however, static fatigue 
data can still be used to make failure predictions in 
the fracture mechanics framework since this data 
contains information about the fatigue behaviour 
as well as the initial flaw distribution. By assuming 
that the initial inert strength distribution (or 
equivalently, the initial flaw distribution) is given 
by the Weibull function [2], 

in n l _ _ F  = mln  (9) 

where F = cumulative failure probability and m, 
So = constants, Equation 8 can be written: 

( l n t f + N l n o a )  = C +  In n l _ F  

(10) 

where C = [ln B + (N --2) In So]. To determine 
the constants N, C, and m, values of (In tf + 
N In aa) are ranked assuming an initial N. Then by 
rewriting Equation 10 as: 

ln t f  = C + ( ~  --~) l n ( l n l - - ~ ) - - N l n a a  

(11) 

a trivariant regression analysis [13] can be used to 
determine N, C, and (N -- 2/m) from which m is 
obtained. This "regressed" value of N is then used 
to recalculate and re-rank the (ln tf + n In aa) 
values and the trivariant regression is iterated until 
convergence on N is obtained. The constants C and 
rn are then determined at this convergence. This 
technique will be referred to as the iterative 
trivariant technique. 

2.2. Dynamic fatigue data 
Evans [14] has derived from Equation 1 that 
fracture strength (S) is related to the stress rate 
(d) by 

S N+, = B(N+ 1)sN-26 (12) 

Since Equation 12 is of the same form as Equation 
2, the analysis of dynamic fatigue data (S versus d) 
can be carried out in a manner similar to that of 
static fatigue data. For example, Equation 12 can 
be rewritten in terms of median values of S and Si 
a s  

1 
ln(S)o.s = N + I  [ l n B + l n ( N + l )  (13) 

+ (N -- 2) in (Si)o.s + In 61 
From a regression analysis of in (S)o.s versus In d, 
N and B are calculated from: 

1 
slope - 

N + I  
(14) 

1 
intercept - N + 1 [In B + In (N + 1) 

+ (N -- 2) in (Si)o.s ] 

Similarly, by defining a homologous stress ratio to 
be 

~ I D  = S /S i  (15) 
Equation 12 can be rewritten 

In O H D  : I 
N +----i [ln B + In (N + 1) + in (d/S~)1 

(16) 
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By ranking the S data for a given 6 and then 
pairing this data with equal ranked Si data, a re- 
gression analysis of In and versus In (6/S a) will 
give N and B from the slope and intercept, respect- 
ively. 

N and B can also be determined from the iterat- 
ire, bivariant technique by rewriting Equation 12 
in the form 

1 

N + I  - ~ [In B + In ( N + I )  + (iV-- 2) in Si] 

The iterative, bivariant regression analysis is 
identical to that for static fatigue data except now 
the quantity to be ranked is [lnS-(N+ 1) -1 In 6]. 
Similarly, N and B can be determined from the 

Figure 1 Median time-to-failure as a func- 
tion of applied stress for soda-lime glass 6 
tested in water at room temperature. The 
regression line has a correlation coefficient 
of  0.93. 5 

I 
1.54 

iterative, trivariant technique by substituting 
Equation 9 into Equation 17 to give [ln  ] 

- N l l [ D + ( N - ~ 2 )  ln(lnl  ~ ' F ) ]  

Where D = In B + In ( N +  1) + (N- -2 ) In  So. By 
ranking the quantity on the left-hand-side of 
Equation 18, a trivariant analysis can be carried 
out by rearranging Equation 18 in the form: 

lnS N + I  D +  In In 

1 

+ In 6 / (19) 
J 
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lime glass tested in water at room tem- 
perature as analysed by the homolo- 
gous stress technique. The regression 
line has a correlation coefficient of 
0.94. 



3. Appl ica t ion  and discussion 
To illustrate the application of the data reduction 
techniques described in the previous section, static 
and dynamic fatigue data [14] for soda-lime glass 
tested in water at room temperature was analysed. 
In the static fatigue tests, 261 samples were tested 
at 5 different applied stresses and in the dynamic 
fatigue tests, 180 samples were tested at 7 differ- 
ent stressing rates. The inert strength of 73 
samples was measured in liquid nitrogen and the 

v 

J 

data fitted to the Weibull function to give: 

in (ln 1--~1 F ) =  8.19 In (Si /137.96)(20)  

where S i is in MPa. The median inert strength of 
the samples was 129A9 MPa. It should be noted 
that the Weibull distribution was used since it gave 
a good fit to the inert strength data: however, 
other statistical distributions could be used if they 
are shown more applicable. 

Figs. 1 to 4 give the results of the regression 
analyses of the static fatigue data according to 
Equations 4, 7, 8, and 11, respectively. Figs. 5 to 8 
show the results of the dynamic fatigue data 
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Figure 3 Static fatigue data of sodaqime 
glass tested in water at room temperature as 
analysed by the iterative, bivariant tech- 
nique. The regression line has a correlation 
coefficient of 0.98. 
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Figure 4 Static fatigue data of sodaqime 
glass tested in water at room temperature as 
analysed by the iterative, trivariant tech- 
nique. The regression line has a correlation 
coefficient of 0.98. 
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By iterating the trivariant regression until conver- 
gence on N is obtained, the constants N, D, and m 
are determined. 
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TABLE I Summary crack growth parameters for soda-lime glass in water 

Test data Data analysis N In B [(MN m-2 )2 sec] 

Static fatigue Median value 19.32 (3.10)* -1.66 (3.11) 
Static fatigue Homologous stress 15.12 ( .38) 1.82 ( .36) 
Static fatigue Iterative bivariant 18.59 ( .22) -1.37 ( .22) 
Dynamic fatigue Median value 18.42 ( .79) -1.70 ( .59) 
Dynamic fatigue Homologous stress 17.96 ( .39) -1.78 ( .28) 
Dynamic thtigue Iterative bivariant 18.34 ( .14)  -1.99 ( .13)  

*The numbers in parentheses represents the standard deviation. 

TAB LE II Summary of fatigue parameters for soda-lime glass in water using iterative, trivariant data analysis 

Test data N m In Bt [ (MN m-2 )2 sec] 

Static fatigue 18.05 (.26)* 7.88 (.12) -0.78 (.27) 
Dynamic fatigue 17.85 (.13) 7.95 (.06) -1.61 (.12) 

*The numbers in parentheses represent the standard deviation. 
?This was calculated from the fitted parameters C and D of the static and dynamic fatigue data, respectively, using the 
value ofS o = 137.96 MNm -2. 

analyses according to Equations 13, 16, 17, and 
19, respectively. For making comparisons between 
data easier, the data as analysed by the iterative, 
bivariant techniques are plotted using the same 
axes as that used by the iterative, trivariant tech- 
nique. Tables I and II summarize the crack growth 
parameters as determined from the various data 
analyses. 

The general improvement of  the fit to the 
data with the iterative bivariant and trivariant tech- 
niques, as compared to the median value and 
homologous stress techniques, is clearly evident in 
the figures and is undoubtedly related to the fact 
that the iterative techniques analyse all the data 
together rather than ranking the data separately 
for each applied stress or stressing rate condition. 
From Tables I and II it is seen that the values 
obtained for N and B are all similar and, hence, do 

not depend on the data analysis technique or on 
the particular experiment (static or dynamic 
fatigue) used. This similarity in the fatigue con- 
stants as determined from the various data analysis 
techniques was expected since a large enough 
number of  samples was tested to give an accurate 
representation of  the time-to-failure and strength 
distributions; hence, the good agreement between 
the median value and homologous stress tech- 
niques and the iterative techniques. The general 
agreement between the iterative techniques can 
also be seen by noting the similarity in the re- 
gression lines through the data in Figs. 3 and 4 and 
Figs. 7 and 8. It is also evident from Tables I and 
II that the techniques that utilize all of  the data in 
the regression analysis (homologous stress, iterat- 
ive bivariant, and iterative trivariant) give much 
better confidence in the fatigue constants as 
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Figure 5 Median fracture strength as a 
function of stressing rate for soda4ime 
glass tested in water at room tempera- 
ture. The regression line has a corre- 
lation coefficient of 0.99. 
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Figure 6 Dynamic fatigue data of soda-lime 
glass tested in water at room temperature as 
analysed by the homologous stress tech- 
nique. The regression line has a correlation 
coefficient of 0.96. 

Figure 7 Dynamic fatigue data of soda4ime 
glass tested in water at room temperature as 
analysed by the iterative, bivariant tech- 
nique. The regression line has a correlation 
coefficient of 0.99. 
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evidenced by the smaller standard deviations. 
Furthermore, the excellent agreement between the 
Weibull slope, m, obtained from the iterative, 
trivariant analyses (7.88 and 7.95) with that 
obtained from the separate inert strength 
measurements (8.19) gives additional validity to 
this approach and to the fact that fatigue data 
contains information about not only the fatigue 
behaviour of  the material in a given environment 
but also the initial inert strength distribution. In 

summary, it is believed that these results give gen- 
eral validity to the fracture mechanics framework 
for analysing fatigue data as presented in the pre- 
ceding section of  this paper. 

To see more clearly that the differences in the 
fatigue parameters in Tables I and II do not lead to 
significant differences in failure predictions, the 
applied stress for a lifetime of  10 s sec at the cumu- 
lative failure probability of  10 -3 was calculated 
using the fatigue parameters in Tables I and II. 
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Figure 8 Dynamic fatigue data of soda-lime 
glass tested in water at room temperature 
as analysed by the iterative, trivariant tech- 
nique. The regression line has a correlation 
coefficient of 0.99. 
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Figure 9 Results of the iterative, trivariant 
analysis of the static fatigue data for as- 
fired, reaction-bonded silicon nitride tested 
in water-saturated air at room temperature. 
Data from [15]. The regression line has a 
correlation coefficient of 0.99. 
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TABLE III Predicted applied stress for a lifetime of 
l0 s sec at F = 10 -3 , using the fatigue parameters given in 
Tables I and II 

Test data Data analysis % (MN m-2 ) 

Static fatigue Median value 19.61 (-+ 2.36)* 
Static fatigue Homologous stress 18.15 (+- .65) 
Static fatigue Iterative bivariant 19.07 (-+ .67) 
Static fatigue Iterative Trivariant 18.54 (-+ .65) 
Dynamic fatigue Median value 18.54 (• 1.17) 
Dynamic fatigeu Homologous stress 17.91 (_+ .71) 
Dynamic fatigue Iterative bivariant 18.15 (-+ .64) 
Dynamic fatigue Iterative Trivariant 17.64 (-+ .58) 

*The number in parentheses represents the 95% confi- 
dence limits. 

Table III summarizes these calculations and it is 
seen that all of  the predicted applied stresses are 
quite similar and are within the experimental 
accuracy of  the data. Also included in Table III 
are the 95% confidence limits on the applied stress 
predictions. These confidence limits were calcu- 
lated using the law of  propagation of  errors [6, 7 ] .  
As with the fatigue constants, it is quite evident 
that much greater confidence is obtained in the 
failure predictions based on the techniques that 
utilize all the data in the regression analysis. 

The major advantage of  the iterative techniques 
is that they do not require the testing of  a large 
number of  samples at each applied stress or stress 
rate condition since all the data are ranked 
together. This is most useful in situations where 
the testing of  a large number of  samples is not 
possible: With the iterative techniques it is not 
necessary to get all of  the data at only a few 
applied stresses or stressing rates but rather a more 
"scatter shot" approach can be used whereby a 
large number of  applied stresses or stressing rates 
are employed. The advantage of  this "scatter shot" 
approach is that the data could be spread over a 
broad range of  stresses or stressing rates. In ad- 
dition, the iterative, trivariant analysis will be most 
useful in those cases where inert strength measure- 
ments may be impractical; yet,  one would still like 
to make failure predictions based on fracture 
mechanics principles. To illustrate the usefulness 
of  the iterative, trivariant technique static fatigue 
data [15] for 27 samples of  as-fired, reaction- 
sintered Si 3N4 tested at 5 different applied stress 
levels in water-saturated air at room temperature 
was analysed by this technique and the results are 
shown in Fig. 9. It is quite evident that the data 
fits the regression analysis exceptionally well. The 
values obtained for the constants in Equation 11 

are N = 56.8, m = 11.8, and C = 321.4. Based on 
the fracture strength data in dry air for these same 

samples [15] the value obtained from m appears 
quite reasonable. Also, the value for N agrees quite 
well with that determined from crack velocity data 
on similar samples [16] where N was found to be 
59. Once the constants in Equation 11 have been 
determined, failure predictions can now be made 
for these Si3 N4 samples. For example, for a life- 
time of  l0  s sec under an applied stress of  135 MN 
m -z , the probability of  failure is about 10 -3 . By 
decreasing the applied stress to 75 MNm -2 for the 
same lifetime, reduced the failure probability to 
10 .6 . It is important to emphasize that without 
the use of  the iterative, trivariant analysis, failure 
predictions could not have been made based on 
the limited static fatigue data obtained on this 
material. However, it is just this type of  limited 
data that is often obtained in prototype testing of  
actual components. 

Acknowledgement 
This work was supported by the Naval Research 
Laboratory as part of  the DARPA/NAVSEA 
Ceramic Gas Turbine Engine Program. 

References 
1. A. G. EVANS and S. M. WIEDERHORN, Int. J. 

bract. 10 (1974) 379. 
2. S.M. WIEDERHORN, "Ceramics for High Perform- 

and Applications," edited by J. J. Burke, A. E. 
Gorum, and R. N. Katz (Brook Hill, Chestnut Hill, 
1974) pp.635-65. 

3. J .E .  RITTER Jr, "Fracture Mechanics of Ceramics", 
Vol. 4, edited by R.C. Bradt, D.P.H. Hasselman and 
F.F. Lange (Plenum Press, New York, 1978) pp. 
667-86. 

4. S. M. WIEDERHORN, "Fracture Mechanics of 
Ceramics," Vol. 2, edited by R. C. Bradt, D. P. H. 
Hasselman, and F. F. Lange (Plenum Press, New 
York, 1974) pp. 613-46. 

5. J. E. RITTER Jr and J. A. MEISEL, J. Amer.  
Ceram. Soc. 59 (1976) 478. 

6. S. M. WIEDERHORN, E. R. FULLER, J. MANDEL, 
and A. G. EVANS, ibid. 59 (1976) 403. 

7. D. E. JACOBS and J. E. RITTER Jr, ibM. 59 (1976) 
481. 

8. J. E. RITTER Jr and K. JAKUS, ibid. 60 (1977) 
171. 

9. J. E. RITTER Jr, "Nitrogen Ceramics", edited by 
F. L. Riley (Nordhoff International, Leyden, 1977) 
pp. 481--8. 
S. M. WIEDERHORN, paper presented at the 1977 
Annual Meeting of the American Ceramic Society, 
Chicago. 
B. J. S. WILKINS, "Fracture Mechanics of Ceramics," 
Vol. 2, edited by R. C. Bradt, D. P. H. Hasselman, 

10. 

11. 

2079 



and F. F. Lange (Plenum Press, New York, 1974) pp. 
875-82. 

12. J. E. BURKE, R. H. DOREMUS, W. B. HILLIG and 
A. M. TURKALO, "Ceramics in Severe Environ- 
ments," edited by W. W. Kriegel and Hayne Palmour 
IIl, (Plenum Press, New York, 1971) pp. 435-39.  

13. W. J. DIXON and F. J. MASSEY Jr, "Introduction 
to Statistical Analysis," 3rd edn, (McGraw-Hill, 
New York, 1969). 

14. J. A. MEISEL, M. S. Thesis, University of Mass- 
achusetts (1976). 

15. M. E. GULDEN and A. G. METCALFE, J. Amer. 
Ceram. Soc. 59 (1976) 391. 

16. T. M. YONUSHONIS, M. S. Thesis, Pennsylvania 
State University (1976). 

Received 10 October 1977 and accepted 3 February 1978. 

2080 


